VT symposium 2018

LV summit VT

2018.11.3

Eue-Keun Choi, MD, PhD

Division of Cardiology, Department of Internal Medicine Seoul National University Hospital

Anatomy of LV summit

Circ Arrhythm Electrophysiol. 2013;6:e80-e84 Card Electrophysiol Clin 8 (2016) 99–107

Anatomy of LV summit

McAlpine, Heart and Coronary Arteries, Springer-Verlag, Berlin - Heidelberg, 1975

Approach to LV summit

1. Epicardium -GCV/AIV -Epicardial Access 2. LCC 3. LV endocardium 4. Septal branches 5. RVOT 6. LAA

McAlpine, Heart and Coronary Arteries, Springer-Verlag, Berlin - Heidelberg, 1975

ECG characteristics of LV summit

- RBBB with inf axis
- III/II ratio >1.25
- aVL/aVR ratio >1.1
- Early transition zone (V₂ or V₃)
- S waves in V5 or V6
- QS pattern in lead I
 - 30% of patients
- "pattern break" in V₂
 - Abrupt loss of R wave in V2 followed by return of R wave in V3

Electrocardiographic Recognition of the Epicardial Origin of Ventricular Tachycardias

Predictors of failure of an endocardial VT ablation

- Pseudodelta wave ≥ 34 ms
- Intrinsicoid deflexion time ≥85 ms
- Shortest RS interval ≥121ms
- QRS duration ≥211ms

Percutaneous Epicardial Ablation of Ventricular Arrhythmias Arising From the Left Ventricular Summit Outcomes and Electrocardiogram Correlates of Success

Appropriate candidates for epicardial ablation

- Q-wave ratio of >1.85 in aVL/aVR
- R/S ratio of >2 in V1
- absence of q waves in lead V1

SEOUL NATIONAL UNIVERSITY HOSPITAL

Santangeli P et al. Circ AE. 2015;8:337-343

Mapping and ablation of LVS VA

- Coronary sinus and GCV/AIV
- Coronary cusps
- LV endocardium below the LCC
- RVOT
- Percutaneous epicardial approach
- Surgical approach
- Others

Mapping the coronary sinus and GCV/AIV

SEOUL NATIONAL UNIVERSITY HOSPITAL

Enriquez A, Garcia F et al. Heart Rhythm 2017;14:141-148

Ablation at the GCV/AIV

SEOUL NATIONAL UNIVERSITY HOSPITAL

Enriquez A, Garcia F et al. Heart Rhythm 2017;14:141–148

Limitations for ablation within the GCV/AIV

- Difficulty in advancing the ablation catheter to the site of interest
- Inability to achieve adequate power because of impedance or temperature raise
- Proximity to coronary vessels
 - <u>RF ablation is not recommended within 5 mm of a coronary</u> artery visualized in at least 2 fluoroscopic projections
- Stepwise incremental of RF energy if possible (target 20–40W) is recommended

Mapping the coronary cusps

Mapping the LV endocardium below the LCC

SEOUL NATIONAL UNIVERSITY HOSPITAL

Enriquez A, Garcia F et al. Heart Rhythm 2017;14:141–148

Ablation of ventricular arrhythmias arising near the anterior epicardial veins from the left sinus of Valsalva region: ECG features, anatomic distance, and outcome

Table 2Calculated sensitivity, specificity, and predictive values for the anatomical distance and ECG predictors of successful ablationfrom the LSV region

Criteria	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	95% Confidence interval	
Anatomical distance <13.5 mm	78	64	64	78	Successful: 5.99–16 mm Unsuccessful: 12.26–28.54 mm	
Q-wave ratio in aVL/aVR <1.45	89	75	80	85	Successful: 0.92–1.56 Unsuccessful: 1.27–3.03	
R-wave ratio in lead III/II <1.13	78	75	78	75	Successful: 0.95–1.15 Unsuccessful: 1.03–1.64	

ECG = electrocardiographic; LSV = left sinus of Valsalva; PPV = positive predictive value; NPV = negative predictive value.

SEOUL NATIONAL UNIVERSITY HOSPITAL

Abularach MEJ, Marchlinski FE et al. Heart Rhythm 2012;9:865-873

Ventricular Arrhythmias Near the Distal Great Cardiac Vein Challenging Arrhythmia for Ablation

SEOUL NATIONAL UNIVERSITY HOSPITAL

Nagashima K, Stevenson WG et al. Circ AE 2014;7:906-912

Mapping the RVOT

SEOUL NATIONAL UNIVERSITY HOSPITAL

Enriquez A, Garcia F et al. Heart Rhythm 2017;14:141–148 Ho SY. Anatomy for Cardiac Electrophysiologists

RVOT and coronary artery

SEOUL NATIONAL UNIVERSITY HOSPITAL

#43480401

Epicardial ablation at LVS

- Radiofrequency delivery on the epicardium was attempted only in 14 (61%) patients;
- in the remaining 9 (39%) cases, radiofrequency delivery was aborted because of <u>close proximity to either</u> <u>the left anterior descending</u> <u>or circumflex coronary artery</u>
- Of the 14 patients in whom radiofrequency energy delivery was attempted, it was acutely successful in suppressing the VAs in only 5

Santangeli P et al. Circ AE. 2015;8:337-343

Surgical cryoablation for ventricular tachyarrhythmia arising from the left ventricular outflow tract region ③

- March 2009 to March 2014
- 190 consecutive pts with focal VA from LVOT ablation
- Brigham and Women's Hospital, Boston
- 4 patients (2%) underwent surgical cryoablation
- Handheld argon-powered probe (Cryoablate CryoFlex surgical ablation probe, Medtronic)

	Case 1	Case 2	Case 3	Case 4
Age	48	56	62	44
Gender	Female	Female	Male	Male
Clinical presentation	Symptomatic PVCs and repetitive monomorphic VT	Sustained and repetitive monomorphic VT with presyncope	Symptomatic PVCs	Symptomatic PVCs
Echocardiogram	Mild global LV hypokinesis (LVEF 0.45)	Moderate global LV hypokinesis (LVEF 0.35)	Moderate to severe global LV dysfunction (LVEF 0.2-0.3)	Low normal LVEF with mildly dilated LV Moderate aortic valve regurgitation
Cardiac MRI	Mild systolic dysfunction (LVEF = 45-50%).	Mild systolic dysfunction (LVEF = 45-50%).	Not done	Moderately dilated left ventricle with mild systolic dysfunction (LVEF = 50%)
	No LGE	No LGE		No LGE. Severe aortic insufficiency
Coronary angiography	Normal	Normal	Diffuse moderate (60%) LAD stenosis	Normal
24-hour Holter or event monitoring	Repetitive monomorphic VT and PVCs	Repetitive monomorphic VT and PVCs	Symptomatic monomorphic PVCs comprising 36% of QRS complexes over 24 hours	Frequent symptomatic PVCs in couplets and triplets correlating with symptoms
Other co-morbidity	No	Prior chemotherapy with adriamycin for osteosarcome	Coronary artery disease with remote balloon angioplasty of LAD	Bicuspid aortic valve with moderate to severe aortic regurgitation
Electrocardiogram				
Precordial leads	LBBB pattern	LBBB pattern	LBBB pattern	LBBB pattern
R-wave transition	V3	V3	V3	V3
QRS axis	Inferior	Inferior	Inferior	Inferior
Lead I	rs	rS	rs	R
S wave in V6	Yes	Yes	Yes	Yes
Q wave amplitude in aVL/aVR	1	2.8	0.9	No Q wave in aVR
R wave amplitude in III/II	1.1	1.4	0.9	0.3
MDI	0.59	0.71	0.68	0.68

LV, left ventricle; LAD, left anterior descending artery; LVEF, left ventricular ejection fraction; LBBB, left bundle branch block; MDI, maximum deflection index

SEOUL NATIONAL UNIVERSITY HOSPITAL

Choi EK, Roy JM et al. Heart Rhythm 2015;12:1128-1136

SEOUL NATIONAL UNIVERSITY HOSPITAL

Choi EK, Roy JM et al. Heart Rhythm 2015;12:1128–1136

Case 1.

- Three previous catheter ablation procedures failed
- Earliest activation (20 ms before QRS onset) with a pacemap QRS identical to the VT was recorded in the distal GCV, close to LM
- In OR, frequent PVCs were induced with isoproterenol infusion in escalating doses to 4 µg/min
- Pacing and cryoablation at LV summit area (-150°C for 3 to 5minutes, total 25 minutes of cryoablation)

SEOUL NATIONAL UNIVERSITY HOSPITAL

Choi EK, Roy JM et al. Heart Rhythm 2015;12:1128–1136

Case 2.

- Three previous catheter ablation procedures failed
- Earliest activation (40 ms before QRS onset) with a pacemap QRS identical to the VT was recorded in the <u>distal</u> <u>GCV, close to LM</u>
- Medtronic model 4196 bipolar pacing lead
- Failed induction PVC/VT at OR room
- Diagonal branch of the LAD overlying the AIV
- Five-minute cryoablation applications (3 lesions)
- Brief ST elevation and high lateral wall LV hypokinesis during the final cryoablation
- No VA during 41 months of FU

SEOUL NATIONAL UNIVERSITY HOSPITAL

Choi EK, Roy JM et al. Heart Rhythm 2015;12:1128-1136

Case 3.

- Failed catheter ablation via CS (high temp at low energy)
- Epicardial approach: within 2 mm of the LCX and LAD
- <u>Pacing lead</u> was positioned at the junction of the GCV within the anterolateral branch (Medtronic model 4196, 78 cm)
- No inducible PVC at OR room
- Cryoablation at region just beneath the distal GCV
- Anterior ST-segment elevation and LV dysfunction attributed to coronary

SEOUL NATIONAL UNIVERSITY HOSPITAL

Choi EK, Roy JM et al. Heart Rhythm 2015;12:1128–1136

Case 3.

- Different PVC during postop
- <u>RFCA at LVOT endocardium below the epicardial ablation area</u>, below the aortic annulus at the level of jxn of the RCC/LCC commisure
- 3 months later, angina->CAG: 90% stenosis at LAD->PCI
- No VA during 39 months FU

SEOUL NATIONAL UNIVERSITY HOSPITAL

Choi EK, Roy JM et al. Heart Rhythm 2015;12:1128-1136

Totally endoscopic robotic epicardial ablation of refractory left ventricular summit arrhythmia: First-in-man @ •

all on the second secon

Electrocautery-assisted dissection of 10–15 mm off at to allow for more complete mapping with direct epicardial contact

SEOUL NATIONAL UNIVERSITY HOSPITAL

Aziz Z et al. Heart Rhythm 2017;14:135–138

Different ablation strategy

Bipolar ablation

Needle ablation

SEOUL NATIONAL UNIVERSITY HOSPITAL

Circulation. 2013;128:2289–2295 J Cardiovasc Electrophysiol. 2014;25:1093-9

Venous ethanol ablation for LVS VT

SEOUL NATIONAL UNIVERSITY HOSPITAL

Kreideieh B, Valderrábano M et al. Circ AE 2016;9:e004352

Take home message

- Anatomy of LV summit
- ECG characteristics: III/II ratio, aVL/aVR ratio
- Systematic approach in EP lab
 - Coronary sinus and GCV/AIV
 - Coronary cusps
 - LV endocardium below the LCC
 - RVOT
 - Percutaneous epicardial approach
- Ablation: conventional, bipolar, needle, and EtOH
- Surgical approach: cryo, RFCA

Seoul National University Hospital Cardiac Arrhythmia Laboratory

SNUH EP lab

Seil Oh, MD, PhD Eue-Keun Choi , MD, PhD Myung-Jin Cha, MD Euijae Lee, MD Inki Moon, MD

SNUBH EP lab II-Young Oh, MD, PhD Youngjin Cho, MD SMG-SNU Boramae

Medical Center EP lab Woo-Hyun Lim, MD

Animal Lab

Moo-Kang Kim Jee-Hee Chang

Sein Hwang

Da-jung Hur

Thank you for your attention

Bo-mi Yu

Soon Chun Hyang University Hospital Seoul So-Ryoung Lee, MD

TIT

Anatomy of LV summit

SEOUL NATIONAL UNIVERSITY HOSPITAL

Circ Arrhythm Electrophysiol. 2013;6:e80-e84.

Choi EK, Roy JM et al. Heart Rhythm 2015;12:1128–1136

CT and fluoroscopic images of LV summit

SEOUL NATIONAL UNIVERSITY HOSPITAL

Yamada T et al. Circ AE 2010;3:616-623